Comparing viscous hydro & data: what's needed to make progress?

The PHENIX view Barbara Jacak Dec. 15, 2009

outline

- Goals and issues
- Many hydro models this is good
 But also bad, benchmarking each one = work
- Two complementary approaches different goals
 Simpler models to study sensitivities
 Full simulation with all issues addressed
- Observables PHENIX would like to see you study
 Constituent quark scaling at low/moderate p_T
 The break from constituent quark scaling
 Identified hadron flow & hadron gas effects
 Initial condition vs η/s data to help disentangle
 v₄
 heavy quark, direct photon flow

What we want to learn

Properties of the quark soup!

- What is the value of η/s?
- What is the initial condition?
 Glauber, CGC or something else?

At high p_{T:}
 precision v₂ measurements
 probe interplay between
 medium flow & opacity

Issues*

- Hadronic state effects
 Change particle mix, spectra
 Viscous corrections
- Eccentricity fluctuations
- T dependence of η/s
- Non-equilibrium effects
- Bulk viscosity (not small near T_c)

* Discussed extensively on Monday

Important: benchmark your hydro!

Also via dN_{ch}/dη

Using hydro to pin down viscosity

Luzum & Romatschke, PRC78, 034915 (2008) 3-d viscous hydro

 h^{\pm} particle mix calculated at $T_{chemical\ freezeout}$

There is a problem!

This compares h^{\pm} flow mixing π , K,p together

Data: particle mix NOT same as at T_{chem}

To do better: pions, protons separately

Romatschke & Romatschke, PRL99, 172301 (2007) Luzum & Romatschke, PRC78, 034915 (2008)

Note that ALL comparisons point to small $\eta/s \le 0.08$ Need hadron afterburner & initial state control to truly quantify...

2 approaches - useful but different

Simple(r): Some/many issues not controlled

Chaudhuri 0910.0979

- Qualitative insights on p_T dependence of v₂
 suppression & hadron gas effects vs. centrality
- For quantitative: fluctuations, non-equilibrium effects

Study of initial conditions

• Centrality dependence of v₂/ε Heinz, Moreland

Fluctuations (should be) important in central collisions
 Please include & see if sensitivity persists!

Qualitative vs. quantitative

Qualitative studies are very useful

Teach us a lot in the short run

But we (all) need to be careful to avoid treating these as quantitative results

Plea: please note explicitly what is left out state sensitivity of conclusion

 Textbook worthy results will ultimately come from from the "full monty"

Some of our favorite observables

- Plea to theory:
 Please calculate these
 Help us draw physics conclusions
- Comparing data to multiple viscous hydro calculations will push us toward quantitative (instead of qualitative) physics conclusions

v₂ scaling with quark number

A known known – Scaling breaks at high p_T

Please calculate v₄!

Quantify fluctuations, deviation from equilibrium

Please look at heavy quark flow!

And direct photon flow!

Chatterjee & Srivastava 0908.3548

- Photon emission dominated by highest T
 - → Sensitivity to thermalization time Do viscous effects mess this up?
- **♦** You calculate and we'll measure!

Where/why does v₂ saturate?

- → Minimum η/s??
- → Signal of QGP onset?
- Where does v₂ saturate?
- ★ You calculate and we'll measure!

Conclusions

- Systematic control of issues is key in long term
 But can learn a lot from simpler studies in the interim
- Detailed comparison to data as function of PID, p_T, centrality, etc is necessary Represents a lot of work
- We experimenters should *and can and will* help!
 - Maybe create a database of comparison data?

Backup

Quark gluon plasma is liquid! How does it work?

Plasma opaque to light *and* heavy charm quarks Strongly coupled: neighbors "talk" to each other

To learn: Do b quarks stop too? How does it radiate?

Upgrade:
Si strip/pixel
vertex detector
to tag e[±] from
B decays (2011)

What's this?

Next run (2010): Novel HBD (hadron blind Cerenkov detector) to reject e[±] background

A Known Unknown – initial eccentricity

$$\epsilon_{std} = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \quad \sigma_{xy} = \overline{xy} - \overline{x}\overline{y} \quad \mathbf{2}_{\mathbf{0}}^{\square}$$

$$\sigma_{y}^2 = \langle y^2 \rangle - \langle y \rangle^2,$$

$$< y^2 > + < x^2 >$$
 $\sigma_y^2 = < y^2 > - < y >^2,$

$$= \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2} \qquad \sigma_x^2 = < x^2 > - < x >^2$$

$$\epsilon_{part} = \frac{\sigma_y'^2 - \sigma_x'^2}{\sigma_y'^2 + \sigma_x'^2} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}.$$

$$\varepsilon_4 = 1 - \frac{8\sigma_{xy}^2}{\sigma_x^4 + \sigma_y^4 + 2\sigma_{xy}^2},$$

➤ Geometric fluctuations are very important – be skeptical of any claim that does not include them

eccentricity should be constrained
Roy A. Lacey, Stony Brook University; CATHIE-

Roy A. Lacey, Stony Brook University; CATHIE-TECHOQM. Wacksh Obo BNBrows AUDisersity BM 72009 TECHQM Workshop, BNL USA, Dec 14-18th, 2009